LID at Wetland Studies and Solutions, Inc.

Wetland Studies and Solutions, Inc. 5300 Wellington Branch Drive · Suite 100 Gainesville · Virginia 20155 www.wetlandstudies.com

Wetland Studies and Solutions, Inc.

Wetland

Natural & Cultural Resource consulting firm

75 Staff:

- s Archeology;
- Section Engineering;
- Environmental Science & Ecology;
- Solution Environmental Technology;
- Sompliance;
- ୭ GIS;
- Segulatory;
- Surveying;
- Swildlife Biology

The Basics of LID at WSSI

- Conservation and protection of natural features that provide stormwater control.
- So Minimization of impervious areas and impacts to natural areas.
- Direction of runoff to natural areas to slow down and capture water so it can infiltrate natural areas, evaporate, or be reused.
- Use of multiple small-scale controls that reproduce natural hydrologic processes including infiltration, detention, retention, evaporation, and groundwater recharge.
- Pollution prevention through erosion and sediment control and prevention of soil compaction during site preparation and construction.
- Education regarding the importance, implementation, and maintenance of low-impact stormwater management techniques.

Why Did Wetland Studies Implement LID?

WSSI's building is serviced by an existing regional pond
 No on-site stormwater management is required

Solution Why Implement LID?

Mimic predevelopment hydrology, minimizing Urban Stream Syndrome

Satisfy our curiosity:

- To see how different types of pervious pavement systems perform relative to their cost
- Solution To determine the actual maintenance requirements of an LID project
- Solution To determine the *real* cost of an LID project
- To determine the barriers to LID implementation
- Provide a laboratory for the study of LID performance
- Solution Create an integrated LID plan, rather than using a slapdash approach to LID

How Can LID Help?

- Reduce both runoff and potable water demand by using rainwater onsite in toilets and irrigation.
- Reduce the post-development curve number to the pre-development curve number by using permeable paving surfaces.
- Minimize the effect of increased runoff volume on downstream waters by reducing the post-developed runoff rate below the predeveloped, forested rate through increased storage and time of concentration.
- Comply with Chesapeake Bay Preservation Ordinance and stormwater management ordinance regulations without a conventional stormwater management/BMP facility.

Implementation at WSSI

Wetland Udies and Solutions, Int

The Green Roof

- 1. Steel joists
- 2. Metal roof deck
- 3. 5" R-30 foam insulation
- 4. ¹/₂" gypsum protection board
- 5. 75 mil ethylene propylene diene monomer (EPDM) membrane
- 6. ¹/₂" foam protection board
- 7. 40 mil high-density polyethylene (HDPE) root barrier
- 8. Protection fabric
- 9. 1" drainage layer
- 10. Filter fabric
- **11**. 3-9" lightweight growing medium
- 12. Stone features, sedum, and native perennials and shrubs

The Green Roof

- Solution of extensive (3-4" soil) and intensive (4-9" soil) planting areas
- Reduces impervious area by 3,626 sf 90
- Reduces roof runoff 9
- Engineered to support 62 lbs/sf 90

8,000 Gallon Irrigation Cistern

- Collects the "first flush" of roof runoff (1/2" from entire of the roof)
- Provides irrigation water
- Overflows to rain garden and gravel bed detention
- Sost: \$3.88/gal installed

\$1.23/ sf impervious area treated(Cistern material only cost: \$2.88/gal)

ues and Solutions.

4,000 Gallon Toilet Cistern

- Collects runoff from 3 of the roof's 5 downspouts
- Collects the "first flush" of roof runoff (0.5" from ½ roof or approximately 4,000 gal.)
- Cost: \$26.18/gal installed (Cistern: \$4,430) (Pump/filters/valves/pipes: \$45,425) (Labor: \$48,378) (Design: \$8,620) (Permit: \$660)
- \$7.85/ sf impervious area treated
- Cost would have been substantially lower if the system had been installed during initial construction.

s and Solutions

Solution Overflows to underground cistern

4,000 Gallon Toilet Cistern

- Design assumptions:
 - ∞ 75-people; 2 flushes per person, per day; 1.1 gal. per flush
 - Solution Historic rain data from 1964-2006
- Solution Calculated results:
 - Solution Cistern will be empty approximately 4 days per year
 - Solution Cistern did not go dry during 2009

The Rain Garden

- Treats 34,660 sf of impervious roof and parking lot area
- ✤ 1,536 sf bed; 11,693 sf grassed buffer
- Drains to gravel bed detention
- Cost: \$2.60 /sf impervious area treated

Pervious Concrete

- Reduce impervious area by 11,800 sf. (13.7% of total parking area)
- Drains to gravel bed detention
- Approximate cost: \$6.00/sf installed (Asphalt cost (2005): \$2.56/sf)

Wetland ties and Solutions

Porous Asphalt

- Reduce impervious area by 8,120 sf.
 (9.4% of total parking area)
- Drains to gravel bed detention
- Approximate cost (2010): \$6.73/sf installed (Asphalt cost (2005): \$2.56/sf)

Wetland ies and Solutions

GravelPave2 and Gravel Parking

- Reduce impervious area by 4,555 sf (5.3% of total parking area)
- Drains to gravel bed detention or existing vegetated floodplain
- GravelPave2 cost: \$6.00/sf installed
 Gravel paving cost: \$4.32/sf installed
 (Asphalt cost (2005): \$2.56/sf)
 (GravelPave2 materials only cost: \$3.20/sf)

GRAVELPAVE2 TYPICAL SECTION
NOT TO SCALE
GRAVELPAVE2 POROUS PAVING MAT CONTAINING 1" THICK 2" DIAMETER RINGS FILLED WITH 3/16" DIAMETER OR SMALLER ANGULAR TOPPING GRAVEL COURSE (NO PEA GRAVEL PERMITTED). OWNER RESERVES MEDIA COLOR SELECTION.
LEVELING COURSE: 4"-VDOT NO. 68 AGGREGATE.
FILTER FABRIC (888888888888888888888888888888888888
FILTER FABRIC & TENSAR COMPACTED SUBGRADE
GRAVEL/AGGREGATE PAVEMENT TYPICAL SECTION
NOT TO SCALE
FILTER FABRIC & TENSAR FILTER FABRIC (NOT OPEN GRADED COURSE AGC. NO. 68) 3" THICK (NOT OPEN GRADED COURSE AGC. NO. 68) 3" THICK (NOT OPEN GRADED COURSE AGC. (NOT OPEN GRADED COURSE AGC. (NOT OPEN GRADED COURSE AGC. NO. 3 - 10" THICK) -4" HOPE PERFORATED COLLECTOR PIPE(S) UNLESS OTHERWISE NOTED -(SLOPED TO MATCH PAVEMENT GRADE)

Concrete Pavers

- Reduce impervious area by 5,502 sf.
 (6.4% of total parking area)
- Drains to existing vegetated floodplain
- Cost: \$7.10/sf installed + \$0.80/sf header curb

(Asphalt cost (2005): \$2.56/sf)

(Paver material only cost: \$2.55/sf)

Gravel Bed Detention

- Orifice controlled- drains to existing stream
- Detains the 1-yr storm over 24 hours.
- Cost: \$2.28/cf treatment volume installed
 \$0.32/sf impervious area treated

Water Quality Swale

<image>

- Collects runoff from 12,650 sf of impervious parking surfaces
- Slows runoff
- Solution Water quality volume filters through check dams
- Solution Cost: \$3.68/sf impervious area treated

Naturalistic Landscaping

- Maintains habitat
- Decreases water consumption
- Uses a drip irrigation system and captured rainwater
- Landscape and drip irrigation cost: \$125,864

(Typical landscape and irrigation cost: \$80,000)

Modeled Site Performance

Total Phosphorus (TP) Load Reduction:

Pre-developed, forested TP load (based on the VRRM*)	0.11 lb/ac/yr
Post-development TP load without SWM (based on the VRRM*)	0.99 lb/ac/yr
Post-development TP load (based on the VRRM*)	0.13 lb/ac/yr

* Draft Virginia Runoff Reduction Method worksheet dated March 3, 2011

Volume Reduction:

Pre-developed, forested runoff volume (based on 1" rainfall)	922 cf
Post-development runoff volume without SWM (based on 1" rainfall)	7,625 cf
Post-development volume (based on 1" rainfall)	1,607 cf

Peak Runoff Reduction:

Pre-development runoff rate (based on 1.5-year storm)	9.42 cfs
Post-development runoff rate (based on 1.5-year storm)	7.94 cfs

Wetland es and Solutions

Actual Site Performance

Peak Runoff Rate Reduction:

Conventional site peak runoff rate (1.1" rainfall)	5.65 cfs
Pre-developed, forested runoff rate (1.1" rainfall)	0.36 cfs
Post-development runoff rate (1.1" rainfall)	0.05 cfs

Volume Reduction:

Post-development volume (measured)	2,300 cf
Pre-developed, forested volume (modeled)	400 cf **
Conventional site volume	7,300 cf
Total rainfall	7,900 cf

* Petrey, S., "Low Impact Development (LID) Case Study: Wetland Studies and Solutions, Inc. Headquarters, Gainesville, Virginia." 2007
** The forested volume on this and the preceding slide do not agree because of modeling differences between the VRRM and TR-55

Energy Balance*: $Q_{developed} \leq I.F. \times Q_{pre-developed} \times RV_{pre-developed} / Rv_{developed} \leq 0.8 \times 0.36 \text{ cfs} \times 400 \text{ cf} / 2,300 \text{ cf} \leq 0.05 \text{ cfs}$

Wetlar

*Note that the 1.1" event is NOT equivalent to the 1-year, 24-hour storm. This example only shows the Energy Balance theory.

22

Site Cost Analysis

Item	\$/sf impervious	Cost
Rain garden	\$2.60	\$90,000
Irrigation cistern (8,000-gal.)	\$1.23	\$31,000
Toilet cistern (4,000-gal.)	\$7.85	\$109,940
Green roof	\$31.80	\$115,316
Pervious concrete pavers	\$7.90	\$39,000
Gravel pavement	\$4.32	\$5,500
GravelPave2 system	\$6.00	\$143,500
Pervious concrete	\$6.00	N/A
Porous Asphalt	\$6.73	N/A
Gravel bed detention	\$0.32	\$24,000
Swale	\$3.68	\$46,525
Native landscaping and drip irrigation	N/A	\$125,864
	Total	\$730,645
Standard asphalt / curb-and-gutter estimate		\$360,115

Thanks to the WSSI Project Team

- Solutions, Inc.
- So Project Management The Peterson Companies
- Solutions, Inc.
- So Civil Engineering Urban Engineering and Associates, Inc.
- Solution Architecture W.A. Brown & Associates, P.C.
- So Mechanical, Electrical, Plumbing Potomac Energy Group, Inc.
- Solution Interior Design Bartzen + Ball
- So Building Commissioning Advanced Building Performance, Inc.
- General Contracting EEReed Construction, LP
- Site Work S.W. Rodgers
- See Green Roof Installation The Furbish Company
- Pervious Concrete Virginia Ready-Mixed Concrete Association
- Solution Toilet Cistern Design E.K. Fox & Associates, Ltd.
- Photos Ron O. Blunt Photography

